Modeling Time-variant User Mobility in Wireless Mobile Networks
(Time-variant Community (TVC) Model)

Wei-jen Hsu, Dept. of CISE, U. of Florida
Thrasyvoulos Spyropoulos, INRIA, Sophia-Antipolis, France
Konstantinos Psounis, Dept. of EE, U. of Southern California
Ahmed Helmy, Dept. of CISE, U. of Florida

For TVC_model download: http://nile.cise.ufl.edu/TVC_model/

*This work is supported by NSF awards CNS-0520017 and career award 0134650.
Importance of Mobility Models

- Mobility models are of crucial importance for the evaluation of wireless mobile network protocols.

- A new class of mobility-assisted routing protocols is proposed to:
 - Increase the capacity of wireless networks [1]
 - Facilitate routing in challenging environments (DTN) [2][3][4]
 - No need for spatial paths: Nodes rely on mobility and encounters as the major enabling factor for communication.

Requirements and Our Approach

• Requirements for mobility models
 – Realism (detailed behavior from traces)
 – Mathematical tractability (simple, synthetic random models)
 – Parameterized, tunable behavior

• We abstract mobility characteristics from WLAN traces*, and propose a model amenable to math analysis.

*The most extensive available source for large-scale mobile user data to date.
Outline

• Introduction
• Observation from WLAN traces: key findings and lessons on mobility modeling
 • Time-variant community mobility model
 • Theory derivation – The hitting and the meeting time
• Simulation and Validation
• Future work and Conclusions
Mobility Characteristics from WLANs

- Skewed location visiting preferences
 - Nodes spend 95% of time at top 5 preferred locations.
 - Heavily visited “preferred spots”

- Periodical re-appearance
 - Nodes show up repeatedly at the same location after integer multiples of days.
 - Periodical “daily/weekly schedules”

Mobility Characteristics from WLANs

- Problems of simple random models (random walk, random direction)
 - No preferred locations in space domain (uniform nodal distribution across space)
 - No structure in time domain (homogeneous behavior across time)

- Benefit: Math analysis tractability

Can we improve realism and not sacrifice math tractability?
Other Mobility Models

• Mobility models with WLAN traces have been considered in several papers
 – They considered location preferences but not time-dependent behavior
 – Time-dependent behavior is suggested in [4] but not implemented
• Other realistic behaviors in mobility
 – Grouping of nodes [5]
 – Obstacles in movement [6]

Outline

• Introduction
• Observation from WLAN traces: key findings and lessons on mobility modeling
 • Time-variant community mobility model
 • Theory derivation – The hitting and the meeting time
• Simulation and Validation
• Future work and Conclusions
Community Model

- Skewed location visiting preferences
 - Create “communities” to be the preferred area of movement
 - Each node can have its own community
- Node moves with two different epoch types – Local or roaming
 - Each epoch is a random-direction, straight-line movement
 - Local epochs in the community
 - Roaming epochs around the whole simulation area
 - Torus boundaries

Time-variant Community Model

- Periodical re-appearance
 - Create structure in time – Periods
 - Node moves with different parameters in periods to capture time-dependent mobility
 - Repetitive structure

Simple version: Two time periods with a community in each time period.
Time-variant Community Model

- Major trends of mobility characteristics preserved with simple version model (extensions later)
- In addition, mathematical tractability is retained
Outline

• Introduction
• Observation from WLAN traces: key findings and lessons on mobility modeling
• Time-variant community mobility model
• Theory derivation – The hitting and the meeting time
• Simulation and Validation
• Future work and Conclusions
Theory Derivation

- Quantities of interest
 - Hitting Time – Time before a node moves into the communication range of a randomly selected target (e.g., discover a random event)
 - Meeting Time – Time before two nodes move into the communication range of each other (e.g., direct packet transmission)
 - Assume nodes start from stationary nodal distribution
Theory Derivation – Hitting Time

- We use an example of a single randomly-chosen community in two alternating time periods

Outline of steps
1. Condition on the target location – whether it is in the communities
2. Calculate the prob. of hitting for unit-time slice and the whole time periods
3. Calculate the expected hitting time using 2.
Theory Derivation – Hitting Time

• (Step1) By law of total probability:

\[
HT_{overall} = P_{in,\text{in}}HT_{in,\text{in}} + P_{in,\text{out}}HT_{in,\text{out}} + P_{out,\text{in}}HT_{out,\text{in}} + P_{out,\text{out}}HT_{out,\text{out}}.
\]

where \(P_{in,\text{in}} = (C_n^2/N^2)(C_c^2/N^2) \),
Theory Derivation – Hitting Time

• (Step2) Unit time hitting probability

\[P_{h,n} = I(\text{target in comm. in NMP}) P_{\text{move,l,n}} 2K \bar{v}_l/n/C_n^2 \]
\[+ P_{\text{move,r,n}} 2K \bar{v}_r/N^2, \]

– Random direction movement cover the whole area equal likely

• Each time unit is an i.i.d. Bernoulli trial to discover the target, so hitting prob. for the whole time period

\[P_{H,n} = 1 - (1 - P_{h,n})^{T_n} \]
Theory Derivation – Hitting Time

• (Step3)
 – Think of each time period as a flip of coin. It shows head (success in hitting) with a certain probability.

 \[P = P_{H,n} + P_{H,c} - P_{H,n}P_{H,c} \]

 – One can calculate the expected number of cycles and remaining time units in the last cycle until the first hitting event.
Theory Derivation – Meeting Time

• Outline

1. Condition on the community locations – whether two nodes have overlapped communities
2. Calculate the prob. of meeting for unit-time slice and the whole time periods
3. Calculate the expected meeting time using step 2 – parallel to the derivation of hitting time.
Simulation

- A custom C++ simulator to get the hitting and the meeting times
 - Simple model with two time periods and one community in each time period
 - 50,000 iterations for the hitting time (one node hitting random target) and the meeting time (two nodes meeting each other)

<table>
<thead>
<tr>
<th>Model name</th>
<th>Description</th>
<th>N</th>
<th>C_n</th>
<th>C_c</th>
<th>v_{max}, v_{min}</th>
<th>$T_{max,n}$</th>
<th>$T_{max,c}$</th>
<th>L_r</th>
<th>L_i</th>
<th>$p_{m,n}$</th>
<th>$p_{r,n}$</th>
<th>$p_{m,c}$</th>
<th>$p_{r,c}$</th>
<th>T_n</th>
<th>T_c</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>Match with the MIT trace</td>
<td>1000</td>
<td>100</td>
<td>100</td>
<td>15, 5</td>
<td>100</td>
<td>50</td>
<td>520</td>
<td>80</td>
<td>0.5</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>5760</td>
<td>2880</td>
</tr>
<tr>
<td>Model 2</td>
<td>Highly attractive communities</td>
<td>1000</td>
<td>200</td>
<td>50</td>
<td>15, 5</td>
<td>100</td>
<td>200</td>
<td>520</td>
<td>52</td>
<td>0.6</td>
<td>0.3</td>
<td>0.8</td>
<td>0.1</td>
<td>3000</td>
<td>2000</td>
</tr>
<tr>
<td>Model 3</td>
<td>Not attractive communities</td>
<td>1000</td>
<td>100</td>
<td>100</td>
<td>15, 5</td>
<td>50</td>
<td>200</td>
<td>800</td>
<td>80</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>Model 4</td>
<td>Large-size communities</td>
<td>1000</td>
<td>200</td>
<td>250</td>
<td>15, 5</td>
<td>50</td>
<td>100</td>
<td>800</td>
<td>200</td>
<td>0.7</td>
<td>0.3</td>
<td>0.8</td>
<td>0.1</td>
<td>2000</td>
<td>1000</td>
</tr>
</tbody>
</table>
Simulation

- Good match between theoretical and simulation results
Extension of Model

- Richer granularity in both space and time domain

- Multi-tier communities
- Multiple time periods

![Graph showing extended model with more granularity in space and time domains. The graph compares different models: Model-simplified, Model-complex, and MIT-trace. The x-axis represents time gap in days, and the y-axis shows the probability of re-appearance. The graph also indicates the trend of online time fraction for Weekdays and Weekend.]
Future work

• Other quantities of interest (e.g., Inter-meeting time, contact time [1])
• Routing performance under the model [2][3]
• Reproduce the structure of nodal encounter [4] through careful parameter selection

Conclusions

• Time-variant community model captures important mobility features.
 – Based on intuition about how people move
 – Observed from multiple real WLAN traces

• Routing performance-related quantities (the hitting time and the meeting time) can be derived for the model.

• It provides a generic model which can be tuned for various mobile network scenarios.

• http://nile.cise.ufl.edu/TVC_model/
 – Fully customizable TVC-model
 – NS-2 compatible mobility traces or (time, location) mobility traces
Please visit
http://nile.cise.ufl.edu/TVC_model/
to download the mobility model

Thank you!!

Wei-jen Hsu, wjhsu@ufl.edu
Thrasyvoulos Spyropoulos, Thrasyvoulos.Spyropoulos@sophia.inria.fr
Konstantinos Psounis, kpsounis@usc.edu
Ahmed Helmy, helmy@ufl.edu
Backup Slides
Other quantities of interest

- Inter-meeting time
- Meeting duration

Both quantities follow power-law distributions
Theory Derivation – Meeting Time

• (Step 1) Community overlap probability
 – Nodes move locally more often
 – Nodes with overlapping community meet sooner
 – Community overlap prob.

\[P_x = \frac{(C + 2K)^2}{N^2}. \]
Theory Derivation – Meeting Time

- (Step2) Unit time meeting probability
- Non-overlapping community
- Overlapping community

Unique terms (both nodes in local epoch)

\[
P_{m, no_ov} = \frac{2K \bar{v} \bar{v'}}{N^2} \times 2P_{move,r}(P_{pause,r} + P_{pause,l}) + \frac{2K \bar{v} \bar{v'}}{N^2} \times \frac{C^2}{N^2} \times \frac{2K \bar{v} \bar{v'}}{N^2} \times \frac{2K \bar{v} \bar{v'}}{N^2} \times ((P_{move,r} + P_{move,l})^2 - P_{move,l}^2),
\]

Common terms for both cases (at least one node is in roaming state)

\[
P_{m, ov} = \frac{2K \bar{v} \bar{v'}}{N^2} \times \frac{2K \bar{v} \bar{v'}}{N^2} \times \frac{C^2}{N^2} \times \frac{2K \bar{v} \bar{v'}}{N^2} \times \frac{2K \bar{v} \bar{v'}}{N^2} \times ((P_{move,r} + P_{move,l})^2 - P_{move,l}^2),
\]
Simulation

- Low error (<10% for 80% of the studied cases, <20% for the rest) for HT and MT under various parameter sets

Relative error = \(\frac{\text{Theory} - \text{Simulation}}{\text{Simulation}} \)

(a) Hitting time. (b) Meeting time.